2017 ASME CFD Tutorial – Pressure Vessels and Piping Conference (PVP)

On Monday July 17, 2017, Sean McGuffie of Porter McGuffie, Inc. presented the tutorial “The Use of CFD in Design” at the ASME Pressure Vessels and Piping (PVP) Conference in Hawaii.  While this tutorial had the same title as the tutorial presented at the PVP Conference in Toronto in 2012, significant changes were incorporated.

These changes included giving the attendees the opportunity to review the 2012 tutorial to better understand the mathematical basis for the Navier-Stokes equations, online and outside of the presentation.  Removing the tedious mathematics from the presentation enabled Mr. McGuffie to include significantly more information on:

  • Turbulence modeling
  • The actual run process and judging convergence
  • Debugging models
  • The use of CFD in PVP-related applications, including coupling CFD with FEA

PowerPoint for session 1 is available here.

PowerPoint for session 2 is available here.

Energy & Process CFD Symposium 2017

PMI presented at the Energy & Process CFD Symposium in Houston on May 18, 2017. The meeting featured presentations from industry experts discussing the use of simulation for process engineering, energy, and oil and gas applications.

At the symposium, Anthony DeFilippo delivered a presentation, “The Use of Complex Physics Models within the Refining Industry.” Three case studies were presented, highlighting ways that Porter McGuffie combines complex physics models when solving problems. Specifically, the cases look at multi-phase interactions modeled using Eulerian Two-Phase (E2P), thermo-acoustics modeled with Detached Eddy Simulation (DES), and structural response modeled with finite element analysis (FEA.) The focus of these examples was not on how they were carried out, but rather, how CFD-derived information was used to support engineering decisions.

Download Featured PowerPoint

Sour Oil & Gas Advanced Technology (SOGAT) 2016

The Sour Oil & Gas Advanced Technology (SOGAT) conference was held in Abu Dhabi on March 20-24, 2016.  This gathering, which is focused on the gas conditioning issues that must be addressed to deliver sweetened gas for industrial development and infrastructure needs, has become the most prestigious meeting on this topic in the Middle East.

This conference can be considered the counterpart to the Laurence Reid Gas Conditioning (LRGC) conference held each year at the University of Oklahoma in the United States.

At SOGAT, Michael Porter, P.E. delivered a paper introducing a new analysis framework developed by PMI for the analysis and design of thermal reactors for sulfur recovery units.  This new framework represents an entirely new paradigm in the use of CFD to analyze combined thermo/acoustic phenomena.   Prior to PMI’s work in this area, these types of problems were only considered in research or specialized computational environments.  In his presentation and the accompanying paper (linked with this post), Mr. Porter demonstrated that PMI’s techniques can reduce the computing time necessary to obtain valid solutions by several orders of magnitude over techniques currently used to study these phenomena.  With this reduction in the resources required to perform these analyses, this category of coupled thermo/acoustic problems can now be undertaken for refineries and other industrial applications.

Link To Paper

Links to videos:

High-Rate Vibrating Flame

High-Rate Flame in Can

High-Rate Without Choke Ring

Turndown Rate With Choke Ring

2016 Laurance Reid Thermal Reactor Analysis

On February 23, 2016, at the prestigious Laurance Reid Gas Conditioning Conference, PMI provided a “sneak peek” at the new framework that they have developed for the analysis of Sulfur Recovery Unit Thermal Reactors (TRs).  Although the framework has been developed specifically for TRs, it is actually applicable for any combustion-fired unit.  For the first time, the use of CFD is now available to model flow, combustion and acoustics on an industrial scale.   PMI has uploaded two videos to our YouTube channel (channel link) showing the flame shapes for a condition that caused problematic vibrations in the field.  The high rate with flame in can (link to video), in particular, allows the viewer to see the effect of an acoustic standing wave on the flame.

 

PMI will be presenting a paper on this topic in late March at the 2016 SOGAT Conference in Abu Dhabi, UAE.  Stay tuned for additional information on this analysis technique following the conference.

 

Video Links

High Rate Vibrating Flame Laurance Reid 2016

High Rate Flame in Can – Laurance Reid 2016

 

 

LaFarge Roberta Plane Baghouse Analysis

By expanding an undersized baghouse, the Lafarge Roberta plant in Calera, Alabama was able to reduce daily cleaning cycles by a factor of ten and eliminate frequent bag changes due to excessive abrasion.


In 2002, the Lafarge Roberta plant built a new cement line that included a ten-compartment pulse-jet raw mill/kiln baghouse. The new baghouse turned out to be undersized. Lafarge consulted with GE Energy to correct the situation and improve the line’s efficiency.


In production, air volume was 22% over design capacity. The increased air volume pushed the air-to-cloth ratio to the limit, causing drastic increase in filter bag cleaning cycles and leading to bag failure due to flex fatigue. The increased volume also caused high velocity in the ductwork and in the hoppers, creating abrasion around the top of the bags. In the first three years of operation, two sets of filter bags (12 880 total) were used.


Analysis showed that the baghouse needed to be expanded. An additional 8% increase in air volume was also needed. Among the factors to be considered were how to redesign all the ductwork to maintain proper velocity and proper air and dust distribution. In addition, changes to the inlet baffling in the baghouse hoppers were required.

Paper Published by WorldCement

What is a Baghouse? (Wikipedia)

 

Video Card Options and Testing

Viewing and manipulating large models requires significant compute resources. For post-processing FE and CFD results three areas cont